Cover Image

A comprehensive and informative platform package for genome editing using the CRISPR-Cas9 system

Daniel Chia

Abstract


The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas9 genome editing system has been widely used for editing genome sequence from various organisms including human/animal, plant and microorganism. This study provides a comprehensive and informative platform package on how to use the CRISPR-Cas9 system for genome editing. We first briefly introduced the editing system and then described how to make a CRISPR-Cas construct for particular purposes including how to select backbone vectors, where to obtain these vectors, and how to choose corresponding promoters and so on. Subsequently, we introduced how to design single guide RNA (sgRNA) for high efficient genome editing. Finally we briefly discuss how to reduce off-target effects. We have provided many useful website addresses and tools for the CRISPR-Cas9 system. All these resources and tools have been packed and are available in the website: http://www.recopublisher.org/index.php/ExpBiol/pages/view/CRISPR.

Keywords


CRISPR-Cas9; CRISPR; NgAgo-gDNA; NgAgo; Genome editing; Chunyu Han; sgRNA


| Article View Counter:  Abstract - 638 times | PDF - 154 times | HTML - 36 times | DOI:10.23964/expbiol.v1i1.8 - 17 times |

References


Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR pro-vides acquired resistance against viruses in prokaryotes. Science 315: 1709-1712.

Biswas A, Gagnon JN, Brouns SJ, Fineran PC, Brown CM (2013) CRISPRTarget: bioinformatic prediction and analy-sis of crRNA targets. RNA Biol 10: 817-827.

Chari R, Mali P, Moosburner M, Church GM (2015) Unravel-ing CRISPR-Cas9 genome engineering parameters via a li-brary-on-library approach. Nat Methods 12: 823-826.

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 339: 819-823.

Ding Y, Li H, Chen LL, Xie K (2016) Recent Advances in Genome Editing Using CRISPR/Cas9. Front Plant Sci 7: 703.

Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE (2016) Optimized sgR-NA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34: 184-191.

Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31: 822-826.

Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotech 32:279-284.

Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM, O'Connor-Giles KM (2014) Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196: 961-971.

Guo D, Li X, Zhu P, Feng Y, Yang J, Zheng Z, Yang W, Zhang E, Yu Y, Zhou S and Wang H (2015) Online High-throughput Mutagenesis Designer Using Scoring Matrix of Sequence-specific Endonucleases. J Integ Bioinfor 12: 283.

Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1: e60.

Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11: 122-123.

Horvath P, Barrangou R (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science 327: 167-170.

Housden BE, Valvezan AJ, Kelley C, Sopko R, Hu Y, Roesel C, Lin S, Buckner M, Tao R, Yilmazel B, Mohr SE, Man-ning BD, Perrimon N (2015) Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi. Sci Signal 8: rs9.

Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31: 827-832.

Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31: 227-229.

Jansen R, Embden JD, Gaastra W, Schouls LM (2002) Identi-fication of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43: 1565-1575.

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Char-pentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821.

Kanchiswamy CN, Maffei M, Malnoy M, Velasco R, Kim JS (2016) Fine-tuning next-generation genome editing tools. Trends Biotechnol pii: S0167-7799(16)30002-6.

Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS (2013) CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc 8: 2180-2196.

Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL (2014) CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7: 1494-1496.

Lin J, Musunuru K (2016) Genome Engineering Tools for Building Cellular Models of Disease. FEBS J doi: 10.1111/febs.13763. In press.

Liu H, Wei Z, Dominguez A, Li Y, Wang X, Qi LS (2015) CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation. Bioinfor-matics 31: 3676-3678.

Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322: 1843-1845.

Marraffini LA, Sontheimer EJ (March 2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11: 181-190.

Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42: W401-W407.

Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 tar-geting in vivo. Nat Methods 12: 982-988.

Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with re-duced off-target sites. Bioinformatics 31: 1120-1123.

Park J, Bae S, Kim JS (2015) Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics 31: 4014-4016.

Prykhozhij SV, Rajan V, Gaston D, Berman JN (2015) CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10: e0119372.

Ranganathan V, Wahlin K, Maruotti J, Zack DJ (2014) Expansion of the CRISPR-Cas9 genome targeting space through the use of H1 promoter-expressed guide RNAs. Nat Commun 5: 4516.

Selin C, de Kievit TR, Belmonte MF, Fernando WG (2016) Elucidating the Role of Effectors in Plant-Fungal Interac-tions: Progress and Challenges. Front Microbiol 7: 600.

Stemmer M, Thumberger T, Del Sol Keyer M, Wittbrodt J, Mateo JL (2015) CCTop: An Intuitive, Flexible and Relia-ble CRISPR/Cas9 Target Prediction Tool. PLoS One 10: e0124633.

Tasan I, Jain S, Zhao H (2016) Use of genome-editing tools to treat sickle cell disease. Hum Genet In press.

Wang J, Li X, Zhao Y, Li J, Zhou Q, Liu Z (2015) Generation of cell-type-specific gene mutations by expressing the sgRNA of the CRISPR system from the RNA polymerase II promoters. Protein Cell. 6: 689-692.

Wolcott I (2016) Could the CRISPR-Cas9 genome editing system be replaced by the NgAgo-gDNA system? Express Biology 1: 10-15.

Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30: 1180-1182.

Xie S, Shen B, Zhang C, Huang X, Zhang Y (2014) sgR-NAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One 9: e100448.

Xu H, Xiao T, Chen CH, Li W, Meyer CA, Wu Q, Wu D, Cong L, Zhang F, Liu JS, Brown M, Liu XS (2015) Se-quence determinants of improved CRISPR sgRNA design. Genome Res 25: 1147-1157.

Yang W, Tu Z, Sun Q, Li XJ (2016) CRISPR/Cas9: Implica-tions for Modeling and Therapy of Neurodegenerative Diseases. Front Mol Neurosci 9: 30.

Zhu H, Misel L, Graham M, Robinson ML, Liang C (2016) CT-Finder: A Web Service for CRISPR Optimal Target Prediction and Visualization. Sci Rep 6: 25516.

Zhu LJ, Holmes BR, Aronin N, Brodsky MH (2014) CRIS-PRseek: A Bioconductor Package to Identify Target-Specific Guide RNAs for CRISPR-Cas9 Genome-Editing Systems. PLOS ONE 9: e108424.




DOI: http://dx.doi.org/10.23964/expbiol.v1i1.8

Refbacks

  • There are currently no refbacks.